Received: 13 March 2018 Revised: 9 July 2018 Accepted: 31 July 2018

DOI: 10.1002/spe.2634

EXTENDED CONFERENCE PAPER WILEY

Evaluating the suitability of state-based formal methods for
industrial deployment

Atif Mashkoor'2(2 | Felix Kossak! | Alexander Egyed?

Software Competence Center Hagenberg

GmbH, Hagenberg, Austria Summary

2Johannes Kepler University, Linz, Austria After a number of success stories in safety-critical domains, we are starting
to witness applications of formal methods in contemporary systems and soft-

Correspondence . . . . . o . .

Atif Mashkoor, Software Competence ware engineering. However, one thing that is still missing is the evaluation

Center Hagenberg GmbH, 4232 criteria that help software practitioners choose the right formal method for

Hagenberg, Austria.
Email: atif. mashkoor@scch.at;
atif. mashkoor@jku.at comparing different formal methods. The criteria were chosen through a lit-
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erature review, discussions with experts from academia and practitioners from
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methods in industrial and academic projects. The criteria were then evaluated
on several model-oriented state-based formal methods. Our research shows that
besides technical grounds (eg, modeling capabilities and supported development
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renders the selection of the right formal method an automatic process. However,
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1 | INTRODUCTION

After years of advocacy, numerous success stories in the safety-critical systems domain, and the availability of vari-
ous “easy to use” methods and tools, formal methods are now also being applied to application domains that are not
inherently safety critical in nature. One such example is the use of the formal method TLA+' at Amazon for specifying
and model checking their web services.> However, choosing TLA+ was not a straightforward decision for Amazon, and
they experimented with other methods before finally selecting one that satisfied their needs. Such experimentations are
indeed a nuisance for new adopters of formal methods (and, at times, also for previous adopters). Today, no help is avail-
able that navigates practitioners through the intricate process of choosing a formal method suitable for their problem
domain. Choosing an inappropriate method for a task leads to undesired results and misconceptions about the method.
For example, Amazon initially applied Alloy® to the problem, a method that was not particularity designed for this task.
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Different formal methods are generally suitable for different kinds of software projects, domains, and social and eco-
nomic settings. For instance, the development of safety-critical systems needs elaborate evidence for compliance with
safety requirements and standards, whereas other projects have budget and time restrictions that do not allow for expen-
sive verification efforts. It also makes a difference whether engineers involved in the project are trained for a particular
method and domain or whether their experiences are available for maintenance later on. After all, using formal methods
requires skills that most software developers do not have, including familiarity with complex mathematical and logical
structures.

Several studies have been published that compare individual formal methods. However, as we will detail in Section 2,
many of these studies are either outdated or focus on specific aspects of applying formal methods (often either merely
technical criteria of predominantly academic interest or tailored to a particular application domain). To the best of our
knowledge, no study has presented evaluation criteria that may help software practitioners in choosing candidate formal
methods for their problem at hand by highlighting the methods’ strengths and weaknesses.

In this paper, we present a list of criteria for comparing formal methods with respect to general industrial interest.
The criteria are drawn from a literature review, discussions with experts and practitioners from academia and indus-
try, and personal experience that stems from the application of formal methods on industrial and academic projects, for
example, hemodialysis machines,*® aircraft landing gear system,’ stereoscopic acuity,® transportation systems,’'° pla-
tooning systems,"* and business process modeling.* In contrast to many other publications, we include a wide range of
criteria, which our research and discussions with practitioners from academia and industry yielded to be crucial, for a
wider adoption of formal methods in industry. The main motivation behind this paper is to provide the necessary means
to help propagate the use of formal methods in day-to-day systems and software engineering.

An earlier version of this paper was presented at the ABZ 2016 conference.'® In that paper, we mainly presented the
criteria for evaluating and comparing different formal methods. This paper also evaluates seven different model-oriented
state-based formal methods (ie, Alloy, abstract state machines [ASMs],* B,'* Event-B,'* TLA+, Vienna Development
Method (VDM),'” and Z'®) on the stipulated criteria. The evaluation of each method was subsequently checked by one
method expert for consistency and completeness. The salient points raised during the discussion on the paper at the ABZ
2016 conference have also been taken into account in this paper.

As we are currently focusing on model-oriented state-based methods and their open-source tools, proprietary tools (and
their supported methodologies) like SCADE* (Safety-Critical Application Development Environment) or Simulink™ are
not considered. Formal methods supporting only specific tasks in the development process like abstract interpretation®
(effective for detecting runtime errors in software code) or worst-case execution time® (useful for calculating tight upper
bounds for maximal execution time) are also out of the scope of this paper. Similarly, the evaluation of verification systems,
such as PVS,* Isabelle,” and Coq,? is also out of the scope of this paper.

This paper is structured as follows. First, we present our research approach and the list of the reviewed literature in
Section 2. Then, in Section 2.3, we present a structured list of criteria for evaluating formal methods and explain why these
criteria are important. In Section 3, we compare several model-oriented state-based formal methods with respect to these
criteria. This paper is concluded in Section 4, which provides a summary and an outlook for the need of future research.

2 | IDENTIFICATION OF THE CRITERIA

2.1 | Research approach

In this paper, we answer the following three research questions.

1. What criteria are useful in order to select a candidate formal method for a particular setting?
2. Why are the criteria important for the evaluation of a particular formal method?
3. How do particular formal methods fare with respect to these criteria?

Our research approach is based on a literature review complemented by our own experiences with the application of
formal methods to industrial and academic projects. The results of our research are then validated by experts from both
academia and industry. We limited the search for references by using strings, as follows.

*http://www.esterel-technologies.com/products/scade-suite/
Thttps://www.mathworks.com/products/simulink.html
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« “formal methods” AND “evaluation criteria”

« “formal methods” AND “comparison”

o “formal methods” AND “state of the art”

o “formal methods” AND “literature review”

« “formal methods” AND “take-up”

o “formal methods” AND “barriers”

« “formal methods” AND “industrial application”

We used well-known research repositories and search engines, ie, Google Scholar,* Scopus,’ IEEE Xplore,T and ACM
Digital Library.* The bibliographies of the resulting papers also contributed to our research. We further included the
literature that we were already aware of or were pointed out by experts. We found (around) 40 relevant papers that we
will discuss in the subsequent section.

The search for literature yielded several comparisons between different classical formal methods that were conducted
in the 1990s and around 2000. Recently, more comparisons were made in specific settings, typically in the context of
university courses. We noted a recent surge in formal method-related tools that can be integrated in traditional devel-
opment processes. These tools are typically static checkers or model checkers that only partially cover specification and
model-based verification against custom safety properties. Most existing studies compare only a few methods, often only
two or three. Evaluation criteria vary widely, revealing different possible viewpoints.

Evaluations of formal methods from the 1990s, such as by Craigen et al,>* must certainly be considered outdated,
for much has changed since, particularly with respect to tool support, the amount of practical experience, and how
widespread a method is used. This does not leave much material for a concrete evaluation of particular methods. Still, older
publications can yield interesting contributions to the criteria by which formal methods should be evaluated (sometimes
presented as wishes).

After compiling the criteria, we shared it with experts and practitioners from both industry and academia for their
feedback. Correspondents from the following selected companies, ranging from small to large enterprises, participated
in this study: Alstom (www.alstom.com), Altreonic (www.altreonic.com), ClearSy (www.clearsy.com), Fronius (www.
fronius.com), Microsoft (www.microsoft.com), Mitsubishi Electric R&D Center Europe (www.mitsubishielectric-rce.eu),
Rockwell Collins (www.rockwellcollins.com), Systerel (www.systerel.fr), and Thales (www.thalesgroup.com). Some of
our industrial correspondents had direct experiences with the application of formal methods in their own company, some
were consultants who were developing systems for others (and had a very good idea what the overall requirements of
their customers were), and some of them were domain experts uninitiated to formal methods. Representatives from the
following academic institutes also contributed to the validation of our criteria (though it should be noted that their opin-
ions were mostly about the formal methods of their interest): UC Berkeley (eecs.berkeley.edu), INRIA (www.inria.fr/en/
centre/nancy), University of Manchester (www.cs.manchester.ac.uk), MIT (www.csail.mit.edu), University of Newcastle
(www.ncl.ac.uk/computing), University of Pisa (di.unipi.it), and University of York (www.cs.york.ac.uk). On the basis
of discussions, some elements were added to the list of criteria, and some previous ones were either deleted or further
strengthened. The names of all experts who participated in this study are available in the Acknowledgements section of
this paper.

2.2 | Literature reviewed

We now present the literature that we found relevant. We observed that the information on concrete evaluations within
industry is scarce, though we assume that such evaluations happened. A notable exception is a recent paper by Newcombe
on “Why Amazon chose TLA*”?*; although, it largely only describes experience with TLA+ and, to a lesser extent, Alloy
and Microsoft VCC.?® Newcombe's criteria are drawn from the very demanding domain of cloud infrastructure services.
Key demands for those services are a high level of distribution, high performance, and high availability. Two similar
feedbacks from industry on the use of formal methods are provided by Schulte?” and Miller.*® The former presents a view of
systems designers within Microsoft about some aspects of formal methods that can be improved to meet the needs of users
(instead of researchers). The latter briefly describes several formal method experiments conducted at Rockwell Collins
and attempts to pull the observations together into a profile describing what industry needs from the research community.

*https://scholar.google.com
Shttps://www.scopus.com
Thttp://ieeexplore.ieee.org
#http://dl.acm.org
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A position paper from Sifakis* also discusses industry-centric evaluation criteria and provides useful input for the list
presented in this paper. Also, Sifakis discusses, among others, the crucial point of usability and human factors in general.

The papers from Ardis et al*® and Knight et al* provide frameworks for the evaluation of formal specification languages.
The first paper presents criteria and then evaluates several formal languages. The latter paper also presents the perspective
of developers, engineers, and computer scientists on these languages.

In “Formal methods: practice and experience,” Woodcock et al* contribute an overview of historical experiences with
formal methods, particularly from 62 industrial projects. The survey was later extended to 98 projects.*® We could extract
several important criteria from these papers, particularly with regard to tool support.

McGibbon** discusses different evaluation criteria from a viewpoint of the United States Department of Defense,
including more detailed requirements for tools.

Several evaluation criteria can be extracted from the seminal papers by Clarke and Wing* and Bowen and Hinchey.*
The former presents the state of the art and future directions of formal methods, and the latter presents some guidelines
to help propagate the use of formal methods in industry. Those criteria can basically all be found in later sources as well.

Liu et al* list a number of evaluation criteria and compare a great number of methods. Among others, the authors
bring in the additional criterion of applicability in re-engineering, particularly in reverse engineering and restructuring.
Although they are primarily concerned with support for re-engineering, this paper is also of general interest; it includes
interesting characterizations of many different methods and their state at the time; although, unfortunately, much of this
information is now (potentially) outdated.

Heitmeyer®® states that in order to be useful to software practitioners, most of whom lack advanced mathematical
training and theorem proving skills, formal methods need to supply user-friendly and easy-to-understand notations, com-
pletely automatic (ie, push-button) analysis and feedback tools, and a methodology for integration of formal methods into
a standard development process.

An interesting perspective about the application of formal methods is presented by Berry.* He states that when formal
methods work, they mainly work in the later rounds of development by applying the experience gathered with their
application in the earlier rounds and, because of the practitioners’ educational background, mentality and willingness to
apply formal methods. Berry's point of view is further attested by Robertson.*

Banach, in “Model based refinement and the tools of tomorrow,”*' compares B, Event-B, Z, and the ASM method from
a mathematical/technical point of view. His paper contains the only direct comparison one can find of the ASM method
with other methods.

Also, a book by Gannon et al titled Software Specification: A Comparison of Formal Methods** focuses on mathematical
issues; it discusses only VDM as a formal method in a closer sense, together with temporal logic in general as well as
“risk assessment.”

Moreover, Kaur et al, in “Analysis of three formal methods - Z, Band VDM, ”* stress mathematical and modeling issues,
but they also mention, eg, tool support, code generation, and testing.

In the book Software Specification Methods (ed. by Frappier and Habrias),* many different methods are introduced by
means of a case study. In the last chapter of the book, some (but not all) of the methods are compared in tables. The (purely
qualitative) criteria include some which we chose not to adopt here, including graphical representation, object-orientated
concepts, use of variables, and event inhibition.

Taylor et al** survey several software architecture techniques enabling practitioners to choose the right tool for the job at
hand. Rather than focusing on one method, notation, tool, or process, they survey various modeling, design, implementa-
tion, deployment, and system adaptation techniques. While putting the elements associated with modeling techniques in
context and comparing and contrasting them with one another, they focused on analysis (static analysis, dynamic analysis,
performance, etc), refinement, traceability, and design process support (decomposition, distribution, heterogeneity, etc).

A paper by Dondossola*® specializes on the application domain of safety-critical knowledge-based components and
on the method TRIO.* Toward the end, it also offers a comparison of different formal methods, including VDM and Z;
however, the criteria used there are described only very coarsely, so we could not extract much extra information for
our purposes.

A technical report by Barjaktarovic* names requirements for formal methods, particularly industrial requirements,
throughout the text; most of those requirements are also found in other sources, but this paper provides a good
confirmation.

Bicarregui and Matthews* compare VDM and B based on experience gained in two industrial projects, with a focus on
proving.

From an article by Pandey and Batra,*® we obtained useful assessments of Z and VDM, in particular.
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2.3 | Criteria for evaluating formal methods

Now, we will present a structured list of criteria, which is relevant for assessing and comparing formal methods for their
usefulness in concrete industrial projects, based on the project's concrete settings. On the basis of discussions with experts,
we classify the criteria relevant for industrial projects into five categories. Please note that the classification of certain
criteria under a particular category may be cross-cutting and overlapping to some degree. This is by choice as this makes
each category an independent unit of analysis that can also be taken into consideration in isolation.

2.3.1 | Modeling criteria

Modeling criteria concern the scope of systems, the kind of requirements that can be modeled and formalized, and the
ease with which such modeling is possible.

The first criterion is support for composition and decomposition. Decomposition is important for any application domain
when it comes to “larger than toy” systems; without decomposition, large models cannot effectively be overviewed and
handled. Decomposition is also of great value in correctness proofs. Composition is important not only as a necessary
ingredient to decomposition (gluing decomposed part models together) but also for reuse. Among others, (de)composition
is explicitly mentioned as a criterion by Sifakis,® Ardis et al,*® Mcgibbon,** Clarke and Wing,* Liu et al,*” Banach,*
and Kaur et al.*® This is also an important concern for Thales. A related issue is reuse, which should be supported by
appropriate possibilities for parameterization in decomposition. Reuse is explicitly mentioned by Clarke and Wing* and
Bowen and Hinchey.*

The next criterion is support for refinement, that is, for building a series of models for the same system with increasing
depth of detail or for reverse engineering with increasing abstractness. If refinement is supported, then formal links
between models of requirements, design, and implementation can be established within the method. Ideally, it can
even become possible to refine a model up to the level of detail required for implementation, or actually right down
to programming code. Going into the other direction, reverse engineering can be supported. Refinement is mentioned
as a criterion by Newcombe,* Sifakis,” Mcgibbon,* Liu et al,*” and Banach.* Banach* also investigates methods with
respect to what notion of refinement they employ, which is relevant for correctness properties. Also, Clarke and Wing*
mention refinement explicitly, as well as “evolutionary development.” Flexible notion of refinement is an important
criterion for Thales. The support for the notion of abstraction is equally important™ and, according to Altrenoic, one of
the basic reasons for the use of formal methods.

Support for modeling parallelism, concurrency, and distribution is essential for a wide range of real-life applications. We
can distinguish between synchronous parallelism and asynchronous concurrency; the latter can be further complicated
by an arbitrary distribution of resources. While the modeling of (synchronous) parallel systems is well understood, model-
ing of (asynchronous) concurrent systems is still subject to research. Yet, the latter is highly relevant; a paradigm example
of highly distributed concurrent systems is cloud services. Parallelism is mentioned by Dondossola*; concurrency is men-
tioned by Newcombe,* Mcgibbon,* Liu et al,*” and Kaur et al*; and distributed systems are mentioned by Newcombe,*
Sifakis,” and Liu et al.>”

Support for nondeterminism is very useful for keeping models abstract. For specification or high-level design, many
details needed to make a model deterministically executable are not only unnecessary but also actually unwanted. Over-
specification distracts and impairs overview, and for many details, it is better to leave them to implementers to decide.
For execution of abstract models for the purpose of validation, tools, such as JeB,* offer ways to randomly fill the gaps
left by nondeterminism in the model; hence, nondeterminism is not a disadvantage in this respect. Out of the literature
reviewed for this work, nondeterminism is mentioned as a criterion only by Liu et al*’; however, it is implemented in
several methods and motivated in the respective method-specific literature.*

The possibility to express global properties of system correctness is necessary to be able to prove respective requirements
such as safety and temporal constraints (termination, deadlock freeness, and fairness). Sifakis? notes this criterion explic-
itly. An important class of global properties are reliability properties, which are explicitly mentioned by Mcgibbon** and
Liu et al,*” and security policies, which are mentioned by Clarke and Wing.*

Support for modeling time must regard sparse and dense models for time separately (see the work of Liu et al*”). The
former is required for general model checking, and the latter is for modeling real-time properties (including performance)
and respective model checking. The importance of having an explicit notion of time in a modeling language is stressed
by Newcombe,* Liu et al,*” and Dondossola.*® Performance properties concern the complexity of algorithms both with
respect to time and with respect to memory use. Modeling of performance properties and/or real-time constraints is
explicitly mentioned by Newcombe,? Sifakis,® Mcgibbon,* Clarke and Wing,* and Liu et al.”
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Many application domains require that special concepts be easily expressed in a modeling language. One important case
is hybrid systems that require the modeling of both discrete and continuous state changes (see, eg, the work by Platzer*?).
Hybrid systems are also mentioned in the work of Clarke and Wing.*> Another example is the modeling of probability, as
desired by Clarke and Wing** and Liu et al.*” Liu et al*” also evaluate methods with respect to their ability to model dif-
ferent communication concepts (especially synchronous and asynchronous communication; see also concurrency above,
although Liu et al*” separate these issues). Other examples include the modeling of usability properties* or of user inter-
face aspects, particularly in safety-critical environments such as interfaces for pilots or air controllers,* and queuing
theory.* Another similar but relatively new phenomenon is the support for cyberphysical systems. Barjaktarovic*® men-
tions the criterion of “domain-specific notations for niche markets” in general. The general criterion listed is, of course,
domain specific, but existing libraries of reusable concepts and related proofs may play an important role here.

We can generally expect a desire in industry to “be able to capture rich concepts without tedious workarounds,”* which
expresses the last criterion that we adopted in this category. A similar criterion is to be able to introduce custom concepts
that are not natively supported by the method. In a related note, Clarke and Wing* demand support for sufficient data
structures and algorithms.

Additionally, Kaur et al* have suggested support for the object-oriented concept as an evaluation criterion. However,
we think that this criterion is too implementation centric (or at least design centric) for specifications, with which the
use of formal methods will usually start. Therefore, we do not include this criterion here, though others might want to
include it. However, a formal method should support different paradigms, eg, object-oriented, procedural, and functional,
especially if a formal specification is refined to a program that uses different paradigms. We owe Alstom and Thales for
making this explicit.

2.3.2 | Supported development phases

Clarke and Wing* state that it should be possible to amortize the cost of a formal method or tool over many uses. For
example, it should be possible to derive benefits from a single specification at several points in a program'’s life cycle: in
design analysis, code optimization, test case generation, and regression testing.

Support for different phases of software development by formal methods varies widely. Many methods are designed for
modeling, particularly for specification including validation and verification of properties.

We think that an unambiguous and analyzable model is vital for any (meaningful) verification attempt because without
such a model, it may not be clear what exactly is to be verified against what requirements.

A special phase that is not regularly present is that of reverse engineering—extracting the high-level functionality and a
respective specification from a (typically ill-documented) legacy system. We owe attention to this additional project phase
to the work of Liu et al.” A similar criterion is important for Mitsubishi, ie, can the model be extracted automatically
from the code?

Apart from the classical formal method subjects such as specification, validation, and verification, there is an explicit
desire for support for the architecture and design phase by some authors.?-3234353743 There are also frequent wishes for
code generation from formal models?-*-33744 and support for testing,?*-3%3435:37:43,46.48

Bug diagnosis is an issue that deserves special mention besides verification, because finding that some property does
not hold does not mean that one can then easily identify the source of error. Many proving tools provide traces that can
be used to identify the problem, but the output is not always easy to use. Newcombe? points out the importance of this
issue. Barjaktarovic* even states that “industry is mostly interested in tools that find bugs rather than tools that prove
correctness.” Clarke and Wing* explicitly mention “counterexamples as a means of debugging.” Debugging support is
also an important criterion for Mitsubishi.

The potential benefits of formal methods in maintenance (as well as reuse) are highlighted by Ardis et al,*® Knight et al,*
and Barjaktarovic*® and endorsed by Thales.

2.3.3 | Technical criteria

In the category of technical criteria, we focus on tool support and how the methods and their available tools interact
with other aspects of system development from a technical point of view. This includes interfacing and interaction with
requirements engineering and change management as well as with implementation.

The criterion of overall tool support is supposed to consider the variety of tools available for a particular method and the
general quality of those tools. Examples include editors, pretty printers, verification tools like (semi)automatic provers
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and model checkers, interpreters for simulation, code generators, and test case generation. The need for tool support is
stressed by virtually every relevant source. However, not all kinds of tools will be needed in every project; hence, the
sheer number of available different tools would not be an appropriate criterion. According to Mitsubishi, it is also impor-
tant to know how much automation a particular tool offers. According to Thales, stability of the tool support is also
important.

Many tools for formal methods are free and even open source. This may be nice for a researcher, but IT managers in
the industry may worry about the long-term professional support. Thus, Sifakis* brings up the criterion of commercial
support for tools. Barjaktarovic* argues in a similar direction. This was also a major concern for Altreonic.

Customizability of tools is also a highly relevant concern. This can be obtained by means of plug-ins, including alterna-
tive provers, checkers, animators, or editors, but also by various settings, eg, to meet different general requirements for
generated code.

An important issue stressed by many industrial sources regarding requirements engineering is the traceability of require-
ments throughout the development process. In case the product needs to be certified, this is a must. Consequently, also,
tools for formal methods should support tracking of requirements during specification, refinement, code generation, and
test generation (at least). In the literature consulted specially for this work, the requirement of traceability is only found
in the works of Sifakis?® and Dondossola,*® but we think that this should not lead to the conclusion that this issue was of
minor importance. Altreonic fully attests to our opinion. Mitsubishi further adds that traceability is an important criterion
in general (and not only specific to requirements).

Support for change management addresses the fact that the waterfall model is unrealistic in most settings, ie, that we
could go only once through each project phase. Requests for change as well as detection of higher-level errors frequently
require us to revisit earlier project phases. The key questions are as follows: How much stability of the initial specification
is presupposed by the method? How easy is it to introduce a change in the specification if the main work has already shifted
to design or implementation? How easy is it to validate and verify the amended model and to incorporate the changes
in the existing design and code? Note that this is not only important during development but, even more so, for ongoing
maintenance of the finished product. Interestingly, out of the literature consulted specially for this work, this criterion is
only mentioned indirectly in the work of Dondossola* (who states that knowledge-based components can, in practice,
only be incrementally specified) and, in a single place, in the work of Liu et al.”” However, Borger and Stdrk' stress this
issue, and there are even several publications on the use of formal methods within agile development methods.>*) Our
own experience shows the importance of paying respect to such a dynamic reality in industrial projects.

The effect of the method on overall development time is a crucial criterion for the industry. We list it as a technical criterion
because both methods and tools play an important role in the overall development. Although the effect of the use of
formal methods on the overall development time is certainly very difficult to measure or assess, studies in the past (see,
eg, the work of Woodcock et al*?) have already shown that the use of formal methods reduces the overall development
time. Additionally, as advocated by Berry* and as shown by Miller et al,> the second-time use of formal methods also
reduces the development time markedly. A related and even more general criterion is given by Newcombe® as “high
return on investment,” which includes demands that the method “quickly gives useful results” and “improves time to
market.” Clarke and Wing* note under the keyword of “efficiency” that “turnaround time with an interactive tool should
be comparable to that of normal compilation.” According to ClearSy, formal methods affect the whole product lifetime
and not only the development time because of the approach based on “bug avoidance” instead of “bug fixing.”

Regarding code generation, we can consider the efficiency of the generated code as well as the efficiency of code gen-
eration. The efficiency of the generated code is the quality of the code that has been generated by an automatic tool from a
more abstract model: runtime behavior, use of memory, or the amount of manual fixing that is required after generation.
This criterion is mentioned by Sifakis* and Ardis et al.*® The efficiency of code generation, on the other hand, concerns the
speed (and use of resources) with which code is generated. This is important when the abstract model is subject to fre-
quent changes or when modelers want to “play” with the model and test different designs, and thus, they want to see the
effects of their changes quickly. Also, this criterion is given by Sifakis.?? Another important aspect is whether the formal
method puts constraints on the kind of system it realizes. For example, SCADE is very good at formalizing reactive systems
but much less efficient for state-based systems, by the way memory is handled in its underlying synchronous language.
The last point emerged in the discussion with Mitsubishi. According to Alstom, in lieu of mature code generators, imple-
mentation guidelines (containing rules for transforming the constructs of a formal notation into equivalent constructs of
a given programming language) are the next best thing. For example, it is easy to convert model-based formal specifica-
tions, expressed in various notations, into Lisp-like languages and scripting languages like Python. According to Altreonic,
compliance and correctness of the generated code is also an important issue to consider.
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The demand for interoperability with other methods and/or other tools arises from the insight that different methods and
tools are differently suitable for different tasks and project phases. In the cyberphysical era, where software is interacting
closely with physical environments and systems are composed of heterogeneous components, the need for interoper-
ability is multifolded. Moreover, interoperability enhances reuse and facilitates technology changes within a company.
Knight et al,*! Clarke and Wing,* Banach,* and Barjaktarovic*® explicitly mention this criterion (with a more thorough
discussion about the need to combine different methods by the latter). Woodcock et al,*> among others, describe differ-
ent projects in which at least two different methods were used to complement each other. Bowen and Hinchey* briefly
discuss the combination of different formal methods (as well as hybrid methods).

A related criterion is integration of methodology with the usual development methods and tools, which is demanded by
industry in order to facilitate the transition between different project phases, requirements tracking, tool-supported pro-
gram verification against the specification, testing against the specification, unified storage of and access to all documents,
and, maybe most important of all, to keep things simple and familiar for developers. However, from the perspective taken
in this paper, it is not enough to integrate, for example, satisfiability (SAT) solvers or model checkers into a programming
environment, as we want to have also the earlier phases covered, including specification. This is why we did not include
in our survey some papers specialized on such partial approaches. The issue of integration into common development
environments is raised by Sifakis,” Woodcock et al,** Clarke and Wing,*®> Bowen and Hinchey,* and Barjaktarovic.*® A
similar point was stressed by Systerel and Thales during discussions about the integration of formal methods into existing
quality assurance processes and tools of a company.

2.3.4 | Usability

In industrial settings, the easier a method is applicable for normal engineers and developers, the easier it can be adopted
by the industry. Moreover, certain products of the method should be accessible to people outside the development team,
including domain experts (future users), managers, or even lawyers (considering that a formal specification should ideally
be part of a contract between purchaser and supplier; cf the work of Kossak et al*®). Thus, arise criteria like general
understandability, visualization, and animation of a model.

The learning curve of a method concerns the speed with which an average modeler (specifier, designer, or developer)
can learn the method from scratch and obtain useful results in practice. It includes the kind and amount of prior expertise
needed, including a background in mathematics or familiarity with other formal methods. Respective criteria are nomi-
nated by Newcombe? (“easy to learn and easy to apply,” but also “easy to remember”), Sifakis® (“time for learning,” “ease
of learning”), Ardis et al* (“learning curve”), Clarke and Wing* (“early payback,” “incremental gain for incremental
effort,” “ease of learning”), and Barjaktarovic* (“industry has no time to learn complicated new techniques”). (A related
criterion is listed under Industrial applicability below, namely, whether specially trained staff is required to use a method,
and also under Technical criteria above, namely, the effect of the method on overall development time.)

General understandability is important because formal models often need to be understood not only by modelers them-
selves but also, for example, by domain experts in order to validate the model (not only experimentally via simulation
but also thoroughly), managers who need to sign a contract based on a formal specification (among others), and maybe
even lawyers who want to either defend or to contest whether the respective contract was fulfilled or not (cf the work of
Kossak et al*®). Understandability of requirements specifications is explicitly mentioned by Ardis et al,** Dondossola,*
and Barjaktarovic*; related issues are raised by Liu et al*’ (who praise graphical models for being “easy to comprehend”)
and Mcgibbon* (who deals with appearance and syntax in this respect). Our own experience is that cryptic appearance
of models constitutes a severe deterrence for representatives of the industry to adopt formal methods. Model readability
is an important criterion also for Mitsubishi. Altrenoic even calls this a “notational barrier” of formal methods.

Documentation is an important issue as well, including reference handbooks as well as good tutorials. Reference hand-
books are almost always available, but sometimes, it is hard to get a good overview, and it may be hard to find a particular
construct, especially if one cannot remember or guess the exact name. Tutorials often present a few basic constructs but
not more advanced constructs, which are nevertheless often needed. It is also not rare to find that documentation is out-
dated, ie, it has not been adapted to newer versions (a danger especially within small open-source communities with
very limited resources). The issue of documentation is raised by some of the most industry-centric sources considered
here.>23648 Additionally, Systerel reckons that professional trainings are equally important and often demanded by com-
panies. Systerel also thinks that it would be nice if a method provides some methodological (modeling) guidelines like
programming guidelines. This will guide beginners on how to use the formalism and also ensures that the whole team
uses the formal method in the same way. For Thales, documentation and tutorials are equally important.
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Support for collaboration is easily forgotten when academics develop a new method, but it is an important issue in larger
real-life projects. Ideally, support for collaborative modeling should be the same as it is established for development. This
is mentioned by Knight et al.*

2.3.5 | Industrial applicability

The usability criteria dealt with above already have a lot to do with industrial applicability, as have many other criteria
covered by all the previous categories. However, there are still further criteria particularly concerning the capability of
employing a formal method in a typical industrial setting. Industrial application very often means large and complex sys-
tems, as well as certain economic and legal constraints that do not, or only to a much smaller extent, apply to research
projects. Also, as mentioned by Stidolph and Whitehead,* in order to convince anyone in the industry to freshly adopt for-
mal methods, it is necessary to win a priori confidence of the management, potentially on different levels of management
from team leaders up to the very top. A number of related criteria will be detailed now.

The criterion of support for industrial deployment is designed to capture the availability of outside help. A relevant ques-
tion in this context is “Can I get reliable and, if required, long-time support from experts outside the company to introduce
the method and to maintain its use?” A great number of industrial projects in which formal methods are employed rely
on senior university students and teachers, but they may not be available beyond the scope of a few years—for instance,
once students have obtained their doctorate, they may move to some company, potentially a competitor, and even univer-
sity teachers now usually have only short-term contracts (cf the work of Barjaktarovic*®). Consequently, the availability of
commercial support (also beyond mere tool support) will be very helpful. However, also a good learning curve and good
documentation (as listed above) as well as a stable community for the method and its tools are important factors. This
point is mentioned by Ardis et al** and Bowen and Hinchey.*

Scalability is the ability to be well applicable to arbitrarily large and complex projects. One of the most common preju-
dices against formal methods is that they work only for academic “toy examples”; although this has long been shown to
be untrue in general, one may still wonder how scalable a particular method really is, and some authors claim that there
are considerable differences. Scalability as a criterion is explicitly mentioned by Newcombe?® and Sifakis.? Liu et al*” and
Barjaktarovic*® mention the state explosion problem as limiting the applicability of, for example, Petri nets to large-scale
systems and explicitly note that, for example, Z is “capable for large-scale industrial applications.”

Certainly, the actual amount of industrial experience that has been gathered with formal methods in general as well as
with particular methods so far is very interesting for decision makers who ponder newly introducing formal methods.
Such information should also, if possible, detail what experience was gathered—what went well and what went wrong,
which problems were encountered, how development time and costs were affected (so far as can be estimated), etc. Here,
the work of Woodcock et al*? is a valuable source. The work of Liu et al*” uses a criterion that is probably largely based on
such experience, namely, “industrial strength.” Success rate is explicitly listed as a criterion by Sifakis.?® Also, Liu et al*’
mention in a few places whether particular methods have been successfully employed in the past.

A cliché that formal methods would require specially trained, “expensive” personnel is actually well founded. It is one of
the “Seven myths of formal methods” of Hall,® who claims that the mathematics involved in writing, eg, a Z specification,
would require only the basic “high school math” one should expect from any “practicing engineer”; however, we found
that even people with a PhD in computer science are often put off by a Z or B specification, and with ordinary developers,
the picture looks even worse.! According to Alstom, besides a degree in mathematics and foundations in logic, a modeler
should also have the right “skills” and “talent.” Certainly, style of use matters a lot (cf the work of Kossak et al*® for
instance). Anyway, there are certainly considerable differences between particular methods in this respect, and one should
certainly take into account the background of the staff that is currently available in a particular project setting. The issue
of background is raised by Berry* and Robertson,* among others.

Standardization can be very helpful for the industry: it enhances the probability of long-term availability of commercial
tools and facilitates training as well as exchangeability of results. Sifakis®® uses the more general keyword of institutional-
ization to cover standardization, among other factors for this kind of stability. According to ClearSy, certification of tools
is as important as their standardization.

Related is the availability and licensing of the method and related tools. Most of the widely used methods and their tools
are open source, which is definitely nice for researchers and students. However, open-source software requires a large
and stable community to maintain and further develop. Moreover, the availability of commercial support and training

IThis may be a reflection of the poor state of higher education in computer science, not formal methods.
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is essential for more widespread uptake in the industry. Interestingly, this criterion is not explicitly mentioned in the
literature surveyed (but see also the related criterion specifically for tools under technical criteria above).

Last but certainly not least, previsibility of resources, efforts, and costs is crucial for the applicability of formal methods
to industrial projects. Although it could be (very) difficult to predict and estimate the cost associated with the application
of formal methods to a particular task (eg, proving may take a lot of time), this is very important for managerial and
executive decisions. Previsibility can benefit from know-how of and familiarity and experience with formal methods and
their tool sets. This criterion was explicitly mentioned by almost all of our industrial correspondents.

3 | ASSESSMENT OF SELECTED FORMAL METHODS

3.1 | Overview

We will now use the criteria listed above to compare a range of specific methods that we considered relevant. We clearly
favor model-oriented state-based methods because they can be potentially integrated in model-driven engineering. The
advantage is that the models used for rigorous specification can be more easily reused in later project phases, especially
if they support refinement to arbitrary levels of detail. Thereby, the efforts put into specification do not appear “wasted,”
which can be an incentive for managers and developers alike. Moreover, state-based models, in general, support execution
for the purpose of validation, model checking, as well as code generation.

3.2 | Tables for comparison

We now present a direct comparison between different methods through simplified Tables (see Tables 1 to 5). The rationale
for each entry is discussed in the following sections.

“Y” means “yes/supported,” but quality unknown; “N” means “not supported.” A dash “-” means that we could not
find (sufficient) information in the literature on this point. A “?” means that we have inconsistent or even contradicting
information on this point. “(Y)” indicates restricted support, “(N)” indicates little support, “(Good)” means “Good” with
some proviso, “(V. Good)” means very good, etc; parentheses may also indicate that special versions or prototypes sup-
port this feature, but not the standard version. “Med.” abbreviates medium (middling) quality, “Part.” abbreviates partial
support, and “Adapt.” abbreviates adaptable. “Cm.” abbreviates “commercial” (licensing), and “OS” means open source.
“n/a” means “not applicable.”

In Table 1, the support for refinement has been adjudged “medium” for some of the methods, like B or Event-B, where
refinement plays the pivotal role in their success, or TLA+, where refinement has been an underlaying objective in the
design of the method. Our position is that the notion of n-to-m (n abstract models can be refined by m concrete ones)
refinement, such as featured in ASMs, is more liberal and intuitive for specifying systems at desired levels of abstraction
as compared to more restrictive notions of refinements such as one-to-one refinement featured in B. However, one must
note that formal methods like B and Event-B indeed excel over other methods when it comes to (mechanically) proving
and verifying refinement. As far as a tool-supported proof for preservation of properties in the n-to-m refinement schema
is concerned, it may be a burden, particularly for users who are not specially trained for the task. These observations are
already reflected in verification-related entries in Table 2. In Table 1, modeling of nondeterminism, special concepts, and
rich concepts easily is omitted because all methods support these concepts up to a certain degree.

In Table 2, specification is omitted as it is supported by every method considered, validation is also possible for every
method considered through animation or a technique of similar quality, and bug diagnoses is omitted because all of the
methods used model checking for this and performed similarly. In Table 3, the criterion of change management is omitted
due to the lack of information.

TABLE1 Modeling criteria
Alloy ASMs B Event-B TLA+ VDM z

(De)Compos. Y Med. Med. Med. Y Y Good
Refinement Med. Good Med. Med. Med. Med. (Good)
Parall./concur. Med. Good  Part. N Good Y N
Global propert. Y Med. Med. Y Y N? Y

Time/perform. Y N (N) Y Y Y Y)
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TABLE 2 Supported development phases
Alloy ASMs B

Verification (Good) Med. V.Good
Archit./design ~ Med. Med. )
Coding Poor Y Y
Testing Med. Good Med.
Maintenance - Poor -
Reverse engin. Y) Y Y)

TABLE 3 Technical criteria
Alloy ASMs B

Tool support Y Med. Good
Comm. support N N Y
Traceability Med. Good )
Time effort - Adapt. (Long)
Efficient code - n/a Med.
Efficient code gen. - ) Y
Interoperability N ™) Part.
Integration/IDE - (N) N
TABLE 4 Usability
Alloy ASMs B
Learning curve Med. Good Med.
Understandability Med. Good Med.

Event-B TLA+ VDM
V.Good  Good Y
) ) )
Poor N Y
Med. Med. Med.
- N -
09) 3 N
Event-B TLA+ VDM
Good (Good) Med.
Part. N Y
Good - -
(Long)  (Short) -
n/a n/a -
n/a n/a -
Part. Part. Part.
(N) = (N)

Event-B TLA+ VDM

Med. (Good)
Med. Med.

Good
Good

Med.
Good

Good

Good

Part.
Med.
(Long)
n/a

n/a

™)

Z

Bad
Bad

In Table 4, documentation and support for collaboration are omitted. The former is omitted because the amount of
available documentation is pretty much the same, and the latter is omitted because support for collaboration is generally

weak for all the studied methods.

In Table 5, previsibility is omitted because it does not depend on the method itself but several factors around the method,
eg, familiarity and experience of the staff with the method and the associated tool set.

3.3 | Alloy

Alloy is a state-based method based on “relational algebra, first-order predicate logic, transitive closure, and objects.”* It
is closely related to Z (see below), but it has a small and flexible syntax that supports many kinds of modeling styles. It can
also be extended to second-order logic to render models fully analyzable. A typical model written in Alloy is a collection of
constraints that describes a set of structures, for example, all the possible security configurations of a web application or
all the possible topologies of a switching network. Constraints are described in terms of relations. The powerful automatic
analysis and visualization tool, Alloy Analyzer,’ is a constraint solver (SAT solver).

TABLE 5 Industrial applicability

Alloy ASMs B

Deployment sup. N ™) Y
Scalability Bad Med. (Good)
Experience (Much) Med. Much
Special staff (N) (N) Y
Standardization N N N
Licensing (6N oS Cm.

Event-B TLA+ VDM

Y N Y
Med. - Y
(Much) Much  Much
Y N (Y)
N N Y
(O] (O] Cm/OS

z
Y

Much
Y
Y

0S
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3.3.1 | Modeling criteria

Composition is supported through signature extensions and polymorphic modules. Merge (+) and override (++) oper-
ators can also be used in this regard. Alloy supports the refinement mechanism (see, for example, the development of the
Mondex system with Alloy®®). Alloy does support multiple levels of abstraction as well as recursively defined relations
but not recursive functions. Concurrent systems can be modeled in Alloy (see, eg, the work of Brunel et al®'). As Alloy is
based on relational logic and relational calculus, nondeterminism is already present.®* However, this may be a problem
because, as also noticed by Zave,*® nondeterminism can only be implicitly modeled in Alloy. On the other hand, this can
be much more powerful than most explicit mechanisms, because one can write a fully relational postcondition, which is
not possible in many other methods. Alloy has been used for designing systems where global system properties of correct-
ness, such as safety, security, and reliability, have played an important role (see, eg, the work of Brunel et al®'). Alloy has
no direct notion of time. However, it is still possible to express timing properties in Alloy models, as demonstrated by
Abdunabi et al.* Maoz et al® selected Alloy for its “expressive power,” among others, but according to Newcombe,* the
expression of rich concepts is not easy in Alloy. This is because the Alloy language is minimal, and rich concepts must be
expressed idiomatically. Our own impression is that Alloy is a powerful language for expression of rich concepts.

3.3.2 | Supported development phases

Alloy is a system modeling language. It is not exclusively designed for specification only, although there have been some
specification languages developed based on Alloy. It has been extensively used for the specification of systems such as
an electronic purse system® and a flash file system.% Alloy has also been extensively used for system verification and
validation such as in the domain of distributed collaborative editors®” and an automatic train protection system.®®
Although Newcombe?® noted verification as one of the plus points of Alloy, according to Zave,* there are certain prob-
lems with the automated verification of progress properties with Alloy; part of the proofs had to be performed manually.
This is because Alloy uses a bounded exhaustive search to guarantee the absence of counterexamples unlike a deduc-
tive approach, and it is intentionally not designed for such tasks. Although, in general, an enumeration-based analysis
process may not be suitable for complicated analysis tasks as compared to a technique that is based on deductive reason-
ing, Alloy makes it possible to analyze very complex formulas without having to have a particular deductive scheme in
mind. Validation is supported by the Alloy Analyzer's capability of simulation. The ease of bug diagnosis in Alloy is as
good as other comparable methods. As Alloy's analysis is bounded and exhaustive, it is excellent at finding bugs quickly,
but not quite as good at proving that no bugs exist. However, this is an intentional design decision. The Alloy Analyzer
depicts counterexamples as graphs, and such visualizations are indeed helpful. Alloy supports the design and architecture
of systems.®* However, according to Kim and Garlan,* there are certain problems. For example, the provided support is
not sufficient for large models, and it is difficult to relate counterexamples back to the source specification to find what
flaw in the design caused the counterexample to be generated in the first place. However, this is a general problem with
verification tools (eg, model checkers) and not specific to Alloy. There is some work about code generation from Alloy
models such as translation of Alloy models into Java code™ or compilation of Alloy specifications into implementations
that execute against persistent databases.” However, the topic of code generation is not very well addressed within the
Alloy community. There has been extensive work on using Alloy for testing and automatic test case generation (see, eg, the
works of Abad et al’? and Khalek et al’®). However, the aforementioned model-finding limitation is also valid for test case
generation. Rupakheti and Hou™ presented a reverse engineering approach for checking the correctness of Java equality
by modeling Java in Alloy. However, there is no practical demonstration of such an approach on any industrial case study.

3.3.3 | Technical criteria

The primary tool support for Alloy is Alloy Analyzer. In its core, it is a SAT solver that can depict counterexamples as
graphs. It also supports simulation by executing a model's operations. Further tools, including a higher-order constraint
solver, code verifiers for Java, and an eclipse plug-in for Alloy, are listed on the Alloy homepage. The Alloy Analyzer**
is freely downloadable, including its source code. However, there is no commercial support available for this tool. There
are problems regarding traceability as, according to Kim and Garlan,® it is difficult to relate counterexamples back to the
source specification to find what flaw in the design caused it. However, as aforementioned, this is a general problem with
verification tools (eg, model checkers) and not specific to Alloy.

**http://alloy.mit.edu/alloy/download.html
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3.3.4 | Usability

The learning curve is assessed by Newcombe? as good “for problems of modest complexity”; from the work of Zave,” we
infer a medium learning curve. Newcombe?® presents a relatively bad picture regarding the understandability of Alloy
models, eg, due to “a significant amount of syntactic overloading” and due to the possibility of combining different nota-
tional styles. Maoz et al,*® on the other hand, selected Alloy for its “readability,” among others. Our own impression is that
at least more simple models are middling understandable by nonexperts. Actually, Alloy is designed specifically around
a simple language and has as few concepts built in as possible, eg, instead of having one way to express concepts like time
or state, idioms are used. At times, this may render models difficult to understand, especially for beginners. Newcombe?*
assesses the available documentation as good. There is one standard textbook, Software Abstractions: Logic, Language, and
Analysis by Jackson,® and there are links to reference material and tutorials at the Alloy homepage.

3.3.5 | Industrial applicability

Apparently, no commercial support is available for the Alloy method. Scalability problems are documented by
Devyanin et al,”” and Maoz et al® even states that “Alloy was not designed to scale.” Scalability is also assessed to be bad
by Newcombe.”® Wang et al’® discuss ways to tackle scalability and performance problems in the verification of Alloy
models; among others, they suggest to alter the style of modeling, which may, however, affect other model properties like
intuitiveness. The Alloy homepage features many links to papers and case studies using Alloy. The case studies appear
to be largely scientific yet thematically hint at a high degree of industrial involvement, which is explicitly mentioned in
some cases. It is preferable to have specially trained staff for using Alloy, although not absolutely necessary. Alloy is not
standardized. The Analyzer tool is open source.

3.4 | ASMs

ASMs are a state-based method based on the work of Gurevich”” and further developed to an industrial-strength modeling
method by Borger and Stirk™ (see, in particular, chapter 9 thereof). The state space can be modeled by arbitrary data
structures over possibly infinite sets. The core language is remarkably simple. Models can be made at arbitrary levels of
abstraction.

3.4.1 | Modeling criteria

Composition and decomposition is judged as medium by Banach*'; however, from a practical point of view, we consider it
to be quite flexible, although we have also experienced limitations with large systems composed of partly asynchronous
subsystems. One distinctive feature of the method is the reusability of ASM models. An industrial strength example is
the reuse of the Java/JVM models from the work of Stirk et al” to model the ECMA/ISO standard of C# and its virtual
machine (see the PhD thesis of Fruja’™ for more details). Refinement is good, according to Banach*' as well as judging
by our own experience. The ASM method allows for n-to-m refinement, which provides maximum flexibility and makes
abstraction possible (eg, for reverse engineering). Refinement may combine changes of signature (data refinement) as
well as changes of control (procedural refinement) (see pp 25, 110ff in the work of Borger and Stirk'*). ASM refinements
can be proven using SMT solvers.® ASMs are well-suited for modeling parallel and concurrent systems (see the works of
Ferrarotti et al®! and Borger and Schewe??). The open issues with the theory for parallel ASMs do not affect practical work
according to our experience, and also, concurrent systems can already be handled in practice. ASMs allow for modeling
nondeterminism by an explicit “choose” operator; that is, a random element can be selected from a finite set. Moreover,
rules and derived functions (or “macros”) can be left abstract at any level of abstraction, leaving the outcome of their
operations undetermined at this level. Of further help in this respect is the inclusion of an unde f constant in any universe
(or type, loosely speaking). Global properties can, in principle, be expressed via the state space. However, there is no explicit
support for expressing, eg, safety and liveness properties. There is also no explicit notion of time available. Regarding special
concepts, there is the work of Banach et al regarding the modeling of continuous systems.® Regarding the easy expression
of rich concepts, one advantage of the ASM method is its simple notation, which can be easily adapted and expanded to
meet the needs of a particular domain and project setting. The disadvantage of this is that tools will always only have a
limited repertoire of such extra constructs, like standard set theory. Extra functions or predicates will have to be defined,
eg, as macros.
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3.4.2 | Supported development phases

Specification is arguably the chief purpose of the ASM method, where it has the advantage of a high level of general
understandability (provided it is used accordingly) and easy integration with additional, natural text. Validation is sup-
ported first by its general understandability, which allows walk-throughs with domain experts, but also by the availability
of simulation tools. Verification is often done by hand when using ASMs. Thereby, the level of proof granularity can be
freely chosen, which can speed up proving considerably, under certain circumstances even as compared with automated
proving. The Asmeta platform® also enables model checking by tools. Also, proof tools including PVS* and Isabelle*
have been used in the past to verify ASM models, but the required effort for this is rather high.™ For bug diagnosis, the
Asmeta platform provides the AsmetaMA model advisor. Regarding architecture and design, the refinement mechanism
of the ASM method is useful, but limitations of decomposition also limit the usefulness of the method for this purpose.
Only one off-the-shelf code generator is currently available for ASM models that can generate C++ code for the Arduino
platform.® However, the refinement mechanism of ASMs can be and has been used right down to programming code
(manually), for example, in the FALKO project at Siemens.*® A test generator is available in the Asmeta platform (see, eg,
the work of Arcaini and Gargantini®’). The ASM method has been used for testing several case studies such as a land-
ing gear system® and web applications.® The ASM method supports a testing mechanism where model-based testing,
ie, models generating test data, test oracles, and test suites, can be complemented by runtime monitoring, ie, checking
whether a run of a system satisfies or violates a given correctness property. Therefore, we rate ASMs good on this account.
For proper maintenance of a software system that has been developed using ASMs, supplements, fixes, and other changes
must be performed in the ASM model at the appropriate level of abstraction, and from there on, the necessary refinement
steps toward the code have to be repeated (manually). If required or desired, also the respective proofs have to be redone.
As the tool support is currently under development for refinement and coding, we assess the support of the ASM method
for maintenance to be “poor.”#* Reverse engineering has been successfully performed using ASMs (see, eg, pp 103ff, 349f,
362, etc, in the work of Borger and Stirk'*).

3.4.3 | Technical criteria

Overall tool support is at least medium. The tool CoreASM,” for which an Eclipse plug-in is available, is widely used
for simulation. The Asmeta platform provides several tools, including simulating and testing tools, a test generator, a
model checker, a tool for generating executable ASMs from use case models, and a special tool for service-oriented com-
ponents. The Asmeta platform is highly customizable as it can be easily expanded by additional plug-ins. Microsoft once
integrated the ASM-based AsmL specification language in their development environments where it was used by their
testing tool SpecExplorer,” but support for this has long been discontinued. An open-source spin-off, XASM,** does
not seem to have been further developed or maintained either. Commercial support for any of these tools is not avail-
able from the developers. The effect of the use of ASMs on the duration of a development project is easily scalable. One
can start using ASMs for the specification only and then, once people are familiar with it, make further use of it for
design and coding in the following projects. Verification is not a necessary part of the method and can be performed
to any extent and also with any rigor deemed appropriate. Consequently, the ASM method can be freshly introduced
in a team without having to fear tangible delays thereby caused, while in the long run, we expect the method to lead
to an overall reduction in development time as debugging efforts will be considerably reduced and the testing phase
will become shorter. While this is difficult to measure in practice in general, the FALKO project report® states that
absolutely no time was spent on the maintenance phase because the system never broke down, thus saving the time
and cost of the project. In any case, extra effort associated with ASMs is certainly lower than with most other formal
methods. Traceability of requirements can be well achieved via the refinement mechanism, according to our experience;
this is also supported by Banach.*! In theory, interoperability with other methods as well as integration in classical IDEs
may be possible as both CoreASM and Asmeta are based on Eclipse. Microsoft's AsmL could indeed be integrated in
Visual Studio for some time, but this has not been followed up on. At present, no such interoperability or integration
is given.

T According to Borger, the ASM method does not make it difficult to mechanically prove theorems. The difficulty comes from the usual additional

efforts one needs if, instead of a handwritten mathematical proof, one wants a machine-generated or machine-checked proof.
#Borger thinks that assessing the method's ability based on computational tools is not a good idea!
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3.4.4 | Usability

The learning curve of the ASM method is short. There are only a handful of largely intuitive basic constructs to start with.
After a short tutorial, developers should be able to use the method at least for more simple problems. ASM models can be
made fairly generally understandable. Although mathematical symbols can be used, the language is, by design, text based.
Documentation for the method itself is good (see, in particular, the work of Borger and Stirk'*). Documentation for the
available tools is less good, however, consisting largely of scientific publications and manuals that lack overview and may
even seem incomplete and/or outdated. One exception is CoreASM,* whose behavior is documented by an ASM model
for the interpreter, but this is rather an exceptional example.

3.4.5 | Industrial applicability

Professional support for industrial deployment is left to consulting by and cooperation with academic personnel but is not
institutionalized, at least not on a perceptible scale. (However, for example, our own institution, the Software Competence
Center Hagenberg (SCCH) in Austria,’ provides such support.) Scalability has been proven by large-scale projects (see,
eg, the works of Borger and Stérk'* and Stérk et al”®). However, according to our own experience, it is somewhat hampered
by practical issues with decomposition. There is some amount of industrial experience, also with large-scale projects (see,
eg, the work of Stirk et al®); however, employment of ASMs seems to be scattered and not very widespread. We do not
think that special staff is required for modeling with ASMs, though verification certainly will require better trained staff
(such as computer scientists or mathematicians). There does not currently exist any international standard for ASMs.
There is no license required for applying the method, and all the tools mentioned are open source.

351 B

B is a formal language for modeling software specifications and reasoning about them. It is based on set theory and
standard first-order predicate logic. B is supported by the Atelier B platform. 11

3.5.1 | Modeling criteria

Composition and decomposition is supported by the possibility to call operations of other machines and to access, eg,
data structures from other machines. This works basically like calling procedures in procedural programming languages,
but B additionally provides a few options regarding the visibility and accessibility of elements of other machines. Every
machine has its own file. According to Banach,* “The [...] INCLUDES, USES, SEES mechanisms are certainly compo-
sition mechanisms, but they just act at the top level.” B supports only a one-to-one notion of refinement (cf the work of
Banach*). In practice, refinement relies very much on defining the actions of operations, which can initially be left with
an empty action, “skip.” That is, in the operations of one machine, you can call operations of other machines that may
initially be left abstract. B does support parallelism, except for code generation, but it does not support concurrency.’”*
B supports nondeterminism by allowing for nondeterministic choice of values for variables out of a given set (correspond-
ing to Hilbert's e-operator) as well as by operators “ANY” (unbounded choice of value) and “CHOICE” (nondeterministic
choice of alternative substitutions). Regarding system properties, it is possible to express typical safety properties through
invariants in B, but there is no way to elegantly express, eg, temporal properties, as B has no explicit means for the mod-
eling of timing or temporal properties (see also the work of Liu et al*’). An extension of the method has been proposed by
Abrial and Mussat™ in this direction. Reliability properties can be expressed via invariants, and some reliability proper-
ties can moreover be checked via the model checker ProB.* Regarding the easy expression of rich concepts, B provides a
rich language for set theory and, in particular, relation (and function) theory. However, expressing certain concepts such
as data structures in such a language can often be awkward and unintuitive.

3.5.2 | Supported development phases

According to our own experience (but also according to the work of Woodcock et al*?), B is well suited for formal soft-
ware specification. For validation, animation of a B specification can be performed with the tool ProB. The commercial
tool set Atelier B provides a proof obligation generator and an interactive proving environment with different provers

$$hittp://www.scch.at
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for verification. Atelier B uses an axiomatic proof system (cf the work of Liu et al*’). ProB adds the possibility of model
checking. Regarding bug diagnosis, the ProB model checker provides a counterexample with a respective trace. Accord-
ing to Leuschel and Butler,” “[...] if ProB finds a counterexample, the user gets important feedback: the proof obligation
cannot be discharged, along with a reason why.” According to Kaur et al,** B can also be used for design. However, accord-
ing to our own acquaintance with the method, at least for larger pieces of software, we strongly recommend to use other
design tools alongside as well such as graphical modeling support. Atelier B comes with code generators for different tar-
get languages, including C, C++, Java, and Ada. Although the generated code requires some postprocessing, it is a good
basis for the implementation of a B specification. Support for generating test cases is available for B through ProB as
demonstrated by Satpathy et al®® and mentioned by Liu et al.’” B has been successfully used for reverse engineering in the
railway domain®#; however, in our own experience, the one-to-one notion of refinement with unidirectional simulation
does not make B very suitable for abstraction as required for reverse engineering.

3.5.3 | Technical criteria

Tool support for modeling and analyzing in B is available in the form of the Atelier B platform. Atelier B has been profes-
sionally developed and is available with a commercial license and, alternatively, a (somewhat restricted) free license. The
commercial license includes professional support. Atelier B includes an editor, syntax and type checkers, a proof obliga-
tion generator, automatic provers and an interactive proving environment, as well as code generators for different target
languages. A stand-alone model checker, ProB, is available for B and can be used together with Atelier B. Customization
of the tool is restricted. Support for requirements traceability in the B method is discussed by Ponsard and Dieul.”” The
use of the B method may increase development time initially as compared with no use of formal methods. The amount
of time spent in the specification and verification phases will depend on how many proof obligations can be discharged
automatically and how complex the remaining proofs are. Experience shows that proof obligations can soon become
rather intricate. However, once the specification is proven, less effort for debugging and testing may overcompensate the
effort. This may still result in an overall reduction of development time. The quality of generated code is fair. However,
postprocessing of the generated code is required, and there are restrictions regarding possible data types. The code gener-
ation process works reasonably fast. Traceability can be achieved to the extent that requirements can be associated with
different machines. Interoperability is possible with Event-B (the tool Atelier B supports both methods).

3.5.4 | Usability

We assess the learning curve of B to be relatively high. The language is based on predicate logic and set theory which may
be familiar to many, though not all stakeholders. However, there are many symbols and constructs that are not familiar
to most nonmathematicians, and certain relational constructs require a kind of thinking to which mathematicians are
accustomed but not necessarily developers or designers. For a modeler, it is also necessary to get into proving from the
very start, enforced by both the method and the tool. Likewise, general understandability is medium at best. Many domain
experts will struggle to read a B specification without initial training. Documentation is good. There is the B-book,** and
Atelier B comes with extensive documentation for all its features. The work presented by Bicarregui et al®® describes
several related case studies.

3.5.5 | Industrial applicability

Professional support for industrial deployment of the B method is provided by several companies such as ClearSy,!!
Systerel,** and SCCH. Scalability is given via decomposition into different machines, which happens almost automati-
cally during refinement and which prevents large, unwieldy artifacts. However, the increasing number of machines (and
thereby source files) can easily lead to another kind of loss of oversight. Moreover, a large number of interdependent
machines also leads to intricate proof obligations, many of which cannot be automatically discharged anymore. The same
holds if complex data structures (eg, large records) are used. On the other hand, it must be noted that B has been success-
fully used in large-scale industrial projects; thus, we rate scalability as good, with some caution. B has been used in major
industrial projects since the late 1980s; Boulanger® mentions several such projects. Liu et al*’ attest that B enjoys “great

#http://www.data-validation.fr/data-validation-reverse-engineering/
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industrial strength.” Regarding the requirement of special staff, our comments on the learning curve above also suggest
that modeling will usually have to be performed by computer scientists or mathematicians, or maybe the odd developer
with a special interest in algebra. There is no international standard covering B. The basics of the method are described
in the B-book' and in a freely available reference manual.”™ For the tool Atelier B, there is a commercial license (with
support) as well as a free license (with some restrictions, especially no code generators other than for C) available.

3.6 | Event-B

Event-B is a formal language for modeling and reasoning about large reactive and distributed systems. Event-B has been
derived from the classical B method and is therefore also based on set theory and standard first-order predicate logic.
Event-B is provided with Rodin,'® a platform that supports the writing and proving of specifications.

3.6.1 | Modeling criteria

Regarding composition and decomposition, Banach* assesses Event-B as “good.” However, while applying it to develop a
real-life safety-critical system,** we found out that the model decomposition/recomposition facilities in Event-B are not
straightforward and require further improvement. Event-B supports a rather restricted notion of refinement where each
machine is further refined by only one machine. (As an improvement over classical B, an abstract event can be refined
by multiple events in the refining machine.) Several techniques have been proposed to liberalize this linear refinement
process, eg, retrenchment'® or observation-level-driven formal modeling.!! Event-B does not explicitly support paral-
lelism and concurrency (note that a paper by Abrial introducing events explicitly speaks of the development of sequential
programs'®*). However, both parallel (cf the work of Hoang and Abrial'®) and concurrent (cf the work of Bostrom et al'®*)
programs can be defined using the related notions of decomposition and refinement. Event-B does support nondetermin-
ism by allowing for nondeterministic choice of values for variables (eg, : | or : €) and by allowing for event parameters.
Global system properties can effectively be specified in Event-B using invariants. Event-B has no explicit means for the
modeling of timing or temporal properties. However, there are several proposals (see, eg, the works of Abrial and Mussat*
and Rehm!%) to express such properties in Event-B specifications. Regarding special concepts, there exist proposals regard-
ing hybrid and continuous systems (see, in particular, the work of Banach et al'®®). Regarding the easy expression of rich
concepts, Event-B provides a rich language for set theory and, in particular, relation (and function) theory.

3.6.2 | Supported development phases

Event-B is certainly well suited for formal specification. Singh'"’ lists several examples of how the Event-B method has been
used for the specification of critical systems. Animation is the most commonly used technique for validation in Event-B.
The animation plug-in ProB is already available for the Rodin platform. Event-B provides a variety of tools regarding
verification such as Atelier B provers,'® Isabelle/HOL for Rodin,'® SMT solvers for Rodin,''° and the model checker ProB.
Regarding bug diagnosis, the ProB model checker provides a counterexample with a respective trace. Gibson et al*** report
the use of the Event-B method for the engineering of a distributed e-voting system architecture that suggests that this
method supports the design and architecture phase. A couple of code generators have been developed for Event-B. However,
of the four tools we found for generating C code, one''? is not publicly available, one'"* was custom-built and only covers
a part of Event-B syntax, EB2ALL"* explicitly requires manual postprocessing, and Tasking Event-B** came out of an
academic project that is discontinued. All in all, code generation for Event-B does not appear to be mature and well
supported. The MBT (Model-Based Testing) plug-in,''® which is available for the Rodin platform, is capable of generating
test cases from a formal specification. However, its effectiveness for a real application is questionable. The model checker
ProB, on the other hand, provides better results in this context.'’” We do not know of any special support for maintenance
by some tool for Event-B. Certainly, if code generation works, then additional features, changed features, or bug fixes can
be affected on most abstract models by means of (generalized) refinement, and then, the respective further refinement
steps must be performed (with possible reuse of proofs) until regeneration of code becomes possible, but this is possible
with other methods as well. The Event-B method has been used for reverse engineering of Java/Swing User Interfaces.''®
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3.6.3 | Technical criteria

Overall tool support for Event-B is good, and some of the tools are already well proven in use with B. The main tool
is the Eclipse-based platform Rodin, a highly customizable platform into which extra tools can be plugged, including
alternative editors (eg, Camille?), different provers and model checkers (eg, ProB), a requirements traceability tool (eg,
ProR'?), simulation and visualization tools (eg, JeB**), documentation tools, etc. Rodin itself provides the look-and-feel
familiar to all developers who use Eclipse. An alternative tool is Atelier B, which supports both the classical B method
and Event-B. Commercial support for Event-B is provided in the form of commercially supported tools such as Atelier B
and ProR. Requirements traceability is supported by a requirements editing and tracing tool for Event-B—ProR. Initially,
the use of Event-B may increase development time as compared with no use of formal methods. The amount of time spent
in the specification and verification phase will depend on how many proof obligations can be discharged automatically
and how complex the remaining proofs are. Experience shows that proof obligations are, in general, less complex than
those for comparable B models, so that more of them can be automatically discharged. Once the specification is proven
for correctness, less effort for debugging and testing compensates the additional effort. Interoperability is possible with B,
especially when using Atelier B. Matos et al'?! present an approach for model checking Event-B specifications by their
encoding into Alloy. Rivera and Catafio'® present an approach for translating Event-B to JML. Milhau et al'*® present
an approach for translating Algebraic State Transition Diagrams (ASTD) into Event-B. Snook and Butler'** provide a
UML-like graphical front end for Event-B. Integration in development environments may be possible relatively easily as
Rodin is a plug-in for the widely used Eclipse IDE, but no concrete efforts in that direction are known to us.

3.6.4 | Usability

We assess the learning curve of Event-B to be medium (very similar to that of classical B). The language is based on
predicate logic and set theory which may be familiar to many, though not all stakeholders. However, there are many
symbols and constructs which are not familiar to most nonmathematicians, and certain relational constructs require a
kind of thinking to which mathematicians are accustomed but not necessarily developers or designers. For a modeler, it
is also necessary to get into proving from the very start since the method and the tool Rodin force one to do so. Rodin
discharges most of the proofs automatically, but some may require interactive discharging. Likewise, general understand-
ability is medium at best. Many domain experts will struggle to read an Event-B specification without initial training.
Documentation is good. There is the Event-B book,'® but on the Event-B and Rodin homepage,™* one can also find a good
handbook and tutorial for Rodin, language reference, further examples, and a wiki with all kinds of information. Some
support for collaboration is given via a plug-in called “Team-working feature” (see entry “Team-based development” at
the Event-B/Rodin homepage), which enables the use of SVN or a similar version-control tool.

3.6.5 | Industrial applicability

Professional support for industrial deployment of the Event-B method is provided by various research and development
establishments such as ClearSy as well as the SCCH. Scalability is given via refinement, decomposition, patterns, and
generic instantiation. While refinement is already a well-developed notion in Event-B, the other techniques like compo-
sition suffer from certain limitations.’ In comparison with classical B, proof obligations tend to stay simple even as the
model grows. Event-B, although popular in industry, is mostly used for the modeling of control systems.* Some of the
examples of application of Event-B to industrial problems are medical systems'* and business information systems.'*
Regarding the requirement of special staff, our comments on the learning curve above also suggest that modeling will usu-
ally have to be performed by computer scientists or mathematicians, or maybe the odd developer with a special interest
in algebra. There is no international standard covering Event-B. It is available under an open-source license, as are most
of the tools.

3.7 | TLA+

TLA+ is a state-based specification language whose semantics are based on mathematical (Zermelo-Fraenkel) set theory
and on Temporal Logic of Actions (TLA).'?’ It has been designed by Leslie Lamport when he was working at Digital
Equipment Corporation (later bought by Compaq) for the specification of concurrent systems in particular. One of TLA+'s
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major advantages, as described by Lamport, is that it is mostly simple math that one learns in school. The exception is its
use of temporal logic; however, that forms only a small part of ordinary specifications.

3.7.1 | Modeling criteria

TLA+ supports different mechanisms for composition (see chapter 10 in the work of Lamport') such as through
stuttering.'?® Invariance of TLA formulas under finite stuttering is also fundamental for refinement. Refinement is assessed
as “good” by Newcombe,??®) and according to Merz, 284> “A distinctive feature of TLA is its attention to refinement
and composition.” However, as there is no direct support for refinement in TLA+, we rate it medium (although one can
define refinement, for example, through the INSTANCE statement (as substitution) and prove refinement, for example, by
proving the following property: Init_concrete A[] [Next_concrete] = Init_abstract A[] [Next_abstract].) Support for mod-
eling parallel, concurrent, and distributed systems is good, as can be expected from the original purpose of the language;
this is confirmed by Newcombe.>P3%) As for nondeterminism, Lamport describes an example of a nondeterministic spec-
ification through the CHOOSE operator (Hilbert's e-operator).! Nondeterminism can also be expressed using disjunction
and existential quantification, and using PlusCal,'*® which is an algorithmic language based on TLA+. TLA+ does not for-
mally distinguish between specifications and system properties: both are written as logical formulas, and concepts such as
refinement and composition.'® The implication S = I can be read as expressing (i) that specification S satisfies property
I, (ii) that S refines the abstract specification I, or (iii) that property S is stronger than property I. TLA+ uses set theoretic
constructs to define safety properties and temporal logic to define liveness properties. It also provides supporting tools to
verify these properties such as the TLA+ Proof System (TLAPS)*° and the TLC model checker.’*! It is also very common
in TLA+ to express correctness through a high-level state machine and to check that a lower-level system specification
refines (implies) it. This style of verification is also supported by the model checker for both safety and liveness. There is
no built-in notion of time in TLA+. However, a simpler method for specifying discrete time is described in the work of
Lamport.'*? There is also a standard library module for specifying real-time systems, which is neither supported by the
model checker nor the proof system, but still enables the modeling of performance properties. According to Newcombe,*
rich concepts can be easily expressed in TLA+.

3.7.2 | Supported development phases

TLA+ has been primarily designed for specification. Simulation for the purpose of validation is possible through the TLC
model checker. Verification is supported through the TLC model checker and the TLAPS interactive proof system.$$§ TLC
is a mature and efficient tool and can be used to verify both safety and liveness properties as well as refinement. However,
as expected, it is restricted to model checking finite instances. TLAPS, being an interactive theorem prover, on the other
hand, is not restricted to finite instances. However, it has a steep learning curve associated with any such tool and is
also currently restricted to verifying safety properties. Regarding bug diagnosis, the model checker TLC not only presents
counterexamples but also traces for analyzing them, eg, by evaluating a certain expression in every state a posteriori. We
rate it medium, so as Newcombe.* Performance checking is possible (see under modeling of time above). TLA+ models
provide confidence that the models faithfully reflect the intended system and serve as a basis for more detailed designs
and ultimately for implementations. Therefore, TLA+ implicitly supports the architecture and design phase. The PlusCal
compiler generates a TLA+ specification that can be verified using TLC. It has a C style syntax that can be used for
generating executable code. However, no automatic code generation utility is available. The ProB tool can be used for
animating and model checking TLA+ specifications by translating TLA+ to B.!* It can also be used for automated test
case generation.

3.7.3 | Technical criteria

There exist a few tools for TLA+ but the overall tool support is limited. The TLA+ toolbox, available from the TLA+
homepage, 111 is an IDE that is available for free. It comprises an editor, a pretty printer, a model checker (TLC), and an
interactive proof tool (TLAPS). Also, the animator and model checker ProB, originally developed for B and later adapted
for Event-B, additionally supports TLA+. Newcombe? assesses tool support to be good. According to Newcombe et al,>*

$$§https://tla.msr-inria.inria.fr/tlaps/content/Home.html
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extra time effort for using TLA+ is less as compared to other formal methods. As a TLA+ specification can be translated
to B and vice versa, tools for one method can supposedly also be used for the other.

3.7.4 | Usability

The learning curve is described by Newcombe?® to be very short. According to Newcombe,” TLA+ specifications are rea-
sonably well understandable. The alternative language PlusCal, which can be automatically translated to TLA+, appears
to be even more understandable for developers due to its C-style syntax. Regarding documentation, there is a good
introductory book by Lamport which is available for free.' The TLA+ homepage lists some other useful resources as well.

3.7.5 | Industrial applicability

TLA+ is supported by Microsoft Corporation, but we have no indication for professional deployment support. However,
according to Newcombe,? such support may be less needed for TLA+ than for other methods due to the good learning
curve. TLA+ has been used for several large projects. Some examples of application of TLA+ to industrial applications
are discussed in the work of Batson and Lamport.** Newcombe? states that TLA+ has been used successfully on many
projects in industry. To name a few, TLA+ has been successfully used by Compagq,'** Intel,"** Amazon,?> and Microsoft
(Lamport is currently employed by Microsoft Corporation). According to Newcombe,* no special staff is required to
use TLA+; normal developers can use it easily. Neither TLA nor TLA+ has been standardized by an international
organization. TLA+ and its standard tools are open source.

3.8 | VDM

The VDM is one of the oldest formal methods—it was developed in the 1970s at the Vienna laboratory of IBM by a group
including Heinz Zemanek, Dines Bjorner, Cliff Jones, and others (the work of Jones'** provides a detailed account about
the development of VDM). VDM has three dialects: 1) VDM-SL,"¢ which allows for the specification of abstract data types
with pre- and post-conditions of data-type-related functions as well as for state-based modeling; 2) VDM++,"*” which
extends VDM-SL with features for object-oriented modeling and concurrency; and 3) VDM-RT (VDM Real Time), which
extends VDM++ with features for describing real-time computations'*® and distributed systems.'*

3.8.1 | Modeling criteria

Composition is possible.*” VDM models can be structured into data types (and those into functions) and modules,
whereas the object-oriented dialect VDM++ can be structured into classes; thus, we see composition techniques as given.
Refinement is achieved through data reification and operation decomposition. While the former transforms abstract data
types into concrete data structures, the latter transforms specifications into a form that is implementable in a program-
ming language. Although possible in theory, the practical support for refinement is absent in tools. Therefore, support for
the notion of refinement in VDM can be rated as medium. In the work of Larsen et al,'*’ the authors show the use of VDM
for distributed embedded systems and explicitly deal with the challenges of concurrency and real-time systems. As per our
own evaluation, parallelism and concurrency are given in this method. VDM has also been used for the modeling and
validation of distributed embedded systems.'* Support for nondeterminism is available in all dialects of VDM. There are
loose choice operators, such as “let, be, st,” that confer nondeterminism when used in operations in VDM-SL, VDM++,
and VDM-RT. Regarding the notion of time, a technical report*° describes timing analysis for identifying performance bot-
tlenecks using the VDM tool Overture.”* The works presented by Mukherjee et al'*® and Verhoef et al**® also deal with
real-time systems. Regarding special modeling concepts, Mcgibbon* and Pandey and Batra® note that VDM does have
explicit exception handling. However, Liu et al*’ note that there are no communication concepts, and Mcgibbon?** notes that
there is no support for performance, reliability, usability, or user interface modeling. Support for some of these concepts,
such as communication, performance, and reliability, has been introduced to the method since then. VDM-RT contains
a communication bus concept for message passing between processes. The COMPASS Modeling Language (CML)'* also
links features of Circus and VDM to give a formalism with explicit CSP (Communicating Sequential Processes)-like mod-
eling of communications between concurrent processes. VDM also supports the modeling of continuous elements in
embedded and cyberphysical systems.'*
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3.8.2 | Supported development phases

VDM is first and foremost a specification method. Apart from specification, the supporting commercial and open-source
tools, such as VDMTools,'* Overture, VDMPad,'** and VDM, ! allow validation and verification through proofs and
debugging. VDM has been used in the design phase of projects.®>** Pandey and Batra® note, however, that VDM does not
support all aspects of design. Code generators are available both within the commercial VDMTools (from VDM++ to C++
or Java) and within the open-source Overture (for Java). Both VDMTools and Overture have tools to analyze test coverage
and combinatorial testing.'*® Liu et al*’ state that VDM is unsuitable for reverse engineering.

3.8.3 | Technical criteria

There are both commercial and open-source tools available for VDM. VDMTools has been developed commercially but
is available for free now. It includes, among others, an interpreter and debugger, a test coverage statistics tool, and code
generators for C++ and Java (for VDM++ models only). The Overture tool is an open-source, Eclipse-based IDE. It
includes, among others, tools for interpretation and debugging, for combinatorial testing and analyzing test coverage,
managing proof obligations, and code generation for Java; as it is built on Eclipse, it is well customizable as it will be easy
to add further plug-ins. However, Pandey and Batra*® say VDMTools lack usability, noting that “there is no internal editor
for models,” so one has to use external editors. They also say that “the error list cannot be emptied and so it is hard to
see which errors are new and which have already been fixed.” A recent work presented by Couto et al'* details how the
Overture platform can be extended to support other methods and tools such as theorem proving through Isabelle, model
checking through Microsoft Formula,*** simulation through ProB, and refinement through Maude.'¥

3.8.4 | Usability

We expect the learning curve for developers to be rather fast, as the language is, in some ways, similar to programming
languages. Understandability for developers is therefore also rather good, but not for people outside software development
(even though Pandey and Batra® assess VDM specifications to be “easy to understand”). Sufficient documentation is
available for both the method and tools, including manuals and tutorials.

3.8.5 | Industrial applicability

VDM is supported by a commercially available set of tools bundled as VDMTools, which is developed and maintained
by CSK Systems. Manuals, tutorials, and a license for the tools are also available freely. Industrial projects in which
VDM was used, with resulting code of up to 197 KLOC,* suggest that VDM is scalable to a considerable degree. There
is a considerable amount of industrial experience with VDM (see, eg, the works of Woodcock et al** and Mcgibbon**).
Our impression from example models is that software engineers should be able to learn how to model in VDM fairly
quickly. However, formal verification will certainly require special staff. VDM-SL is standardized by the International
Standardization Organization as ISO/IEC 13817-1:1996.

39 | Z

Z is a state-based specification method with a language based on Zermelo-Fraenkel set theory (hence the name) and
predicate logic. It was developed by the Programming Research Group at Oxford University under Jean-Raymond Abrial
around 1980.® Bowen'* presents a very comprehensive list of references about the Z method covering all its aspects.

3.9.1 | Modeling criteria

Composition (and decomposition) can be achieved by means of either so-called “schemas”® or by means of
“promotion.”"*' As both structuring mechanisms are supported by well-defined theories, we rate the quality of compo-
sition mechanisms of Z as good. Z has a well-developed refinement theory: its proof rules for refinement are technically
complete, with both forward and backward refinement rules, jointly.'*> However, Banach*' notes, among others, that
“spurious traces, not corresponding to real-world behavior, can be generated.” Refinement cannot completely go down
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to the code level, as Bowen'>* writes: “Some data and operation refinement is possible in Z but at some point a jump to
code must be made, typically informally.” All in all, the refinement mechanisms of Z appear to be of good quality.™ "
Z does not directly support the modeling of concurrency.’3*° However, the work presented by Smith and Derrick!>®
proposed the integration of Object-Z—an object-oriented extension of the Z method—and CSP for specification, refine-
ment, and verification of concurrent systems. A similar objective can also be achieved using Circus.'*® Baumann and
Lermer'?’ also proposed a framework for the specification of parallel and distributed real-time systems. Nondeterminism is
a well-established explicit concept in Z, because it allows, for example, the disjunction of operational schemas with com-
mon pre-states (this means that from such a pre-state, each of the operations might fire, and it cannot be predetermined
which one). Moreover, since pre-states and post-states can be related by first-order expressions involving disjunctions,
nondeterministic data transformations are straightforward to specify. Our observation is attested by Bowen'>* and fur-
ther explained in the work of Mirian-HosseinAbadi and Mousavi.'*® Expression of global system properties is possible in Z.
Safety properties are captured adequately by state invariants and operation precondition calculations, whereas liveness
can be explored by reachability analysis, either by theorem proving or by using a tool such as ProZ.** An explicit concept
of time is not given for the standard Z method.**” However, Spivey'® suggests how the notion of time can be specified
and used in Z specifications. Regarding special concepts, Mcgibbon** and Pandey and Batra® note that there is no explicit
exception handling and no support for user interface modeling. However, it is worth noting that using schema disjunc-
tion in composing total interfaces, one can implicitly model exception handling. The language of Z is certainly rich, but
whether it allows for easy expressions appears to be questionable.

3.9.2 | Supported development phases

Z is a specification language in the first place. It supports validation via simulation'* and verification via theorem proving
as well as model checking.!** According to Liu et al,*” there is a “semiautomatic proof system” available for Z. The possible
use of Z in design is mentioned in the works of Liu et al,” Kaur et al,* and Pandey and Batra® and is rated “strong” in
this respect, although Pandey and Batra® qualify their assessment, saying that Z was not supporting all aspects of design.
Kaur et al* state that no code generator is available for Z, and Pandey and Batra®™ even say that a “specification written
using Z notation cannot be used to generate computer source code directly”; however, the 1997 paper of McGibbon* says
that code generation is supported. We ourselves failed to find a code generator; hence, we conclude that code generation
is probably not available. Kaur et al** write that test generation for Z is “strong,” and Pandey and Batra® write that Z
“provides a strong base” for testing. Usefulness of Z in reverse engineering is good.*’

3.9.3 | Technical criteria

There is at least medium tool support for Z. Tool sets available include the Community Z Tools (CZT)'*!—an open-source
framework with an Eclipse-based IDE for parsing, theorem proving, type-checking, transforming, animating, and print-
ing ISO Standard Z conforming specifications. As CZT is built on Eclipse, it is well customizable as it will be easy to add
further plug-ins. The animator and model checker ProB meanwhile also supports Z. There is a version of the open-source
higher-order logic proving software ProofPower for Z.*# Another proving tool for Z is z-vimes.¥$$% High-performance
proving is also possible with HOL-Z, which is “a proof environment for Z built as a plug-in of the generic theorem
prover Isabelle/HOL.” 11T Moreover,”## provides some details about the former commercial tool support available for
Z. Currently, a British company, Lemma 1 Ltd,! Il | provides commercial support for the Z method and the tool ProofPower.
Regarding its effect on development time, our evaluation suggests that extra time is required especially as compared with
methods like ASMs or TLA+ because of its “not so familiar” notation. Knight et al*' also presented a similar observation.
Following the work of Banach,* we rate traceability in Z to be medium. Regarding interoperability with other methods,
the ProB tool allows animation of specifications written in the Z language. HOL/Isabelle can also be used to verify Z
specifications.

TT*"Woodcock thinks that in Z, preconditions are preconditions and not firing conditions, so even if some spurious traces are generated, this is not a
problem of the Z refinement method. He further adds that he found refinement mechanisms of Z as “good” when they specified, refined, and proved
the Mondex Electronic Purse in Z/Eves.!5*

Hithttp://www.lemma-one.com/ProofPower/index/

$888http://sourceforge.net/projects/z-vimes/

19T https://www.brucker.ch/projects/hol-z/

#### http://www.oracanada.com/z-eves/welcome.html

I http://www.lemma-one.com/
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3.9.4 | Usability

We estimate the learning curve for Z to be long. Both Knight et al* and Bowen'>* confirm this observation. We rate the
general understandability of a Z specification to be rather bad. Bowen'>* (among others) notes that any Z specification
should be accompanied by natural text to explain each schema; however, we see two problems here: First, the formal
specification and the natural text cannot say the same thing, because the latter lacks precision; thus, there is no guarantee
that the reader of the natural text, eg, a domain expert or a manager, will have the same understanding of the specified
system as the developer who (hopefully) uses the formal part, and conflicts may occur later. Second, experience shows
that it is not very likely that in case of later changes in the specification, the natural text will be updated as well according
to the changed formal parts; hence, formal specification and explaining natural-language text are likely to drift apart. The
problem of understandability is exacerbated by Z's frame problem,* which forces specifiers to explicitly state for every
variable that maintains its value in a step that it does so, thus unnecessarily cluttering the specification. Documentation
for Z is good.'*

3.9.5 | Industrial applicability

A British company, Lemma 1 Ltd, provides commercial support for the Z method and the tool ProofPower. Scalability is
rated as good by Liu et al.” However, Newcombe?® did not find application examples involving the verification of large
systems. According to Woodcock et al*> and Mcgibbon,* there is much industrial experience with Z; these sources also
provide several examples of application of Z on industrial projects. We are certain that special staff is required when using
the Z method. This is at least partly confirmed by Bowen,'** who states that when using Z/EVES for proving, it “takes a
significant amount of skill to use effectively.” Z is standardized by an international body as ISO/IEC 13568:2002. This also
settles the licensing for the method itself; the currently available tools are open source.

4 | CONCLUSION AND FUTURE WORK

The main aim of this work is to consolidate and further develop a system of criteria for assessing particular formal methods
especially with respect to their potential usefulness in industrial projects. We hope that our work will contribute to better
acceptance of formal methods, or rigorous methods, in industry, as practitioners and managers should now find it easier to
assess the possible impacts of introducing such methods in real-life projects and to select the best suitable methods for their
needs. Although it is not possible to generate a matrix that renders the selection of the right formal method an automatic
process, we can generate several pointers, which make this selection process a lot less cumbersome. For example, consider
the case of Amazon as discussed in Section 1. Their key requirements were support for modeling complex concurrent
and distributed systems, good tool support, small learning curve, and high return on investment, ie, the effect of the
method on the overall development time and minimal training.? If we now see the corresponding table entries shown in
Section 3.2, we would realize that the TLA+ method could have been the first pick for Amazon without going into trial
and error.

The first research question raised earlier in this paper, ie, what criteria are useful in order to select a candidate formal
method for a particular setting, has been answered in Section 2.3. The proposed criteria were assembled from the relevant
literature, whereby we tried to put a special focus on sources close to industry. The criteria were later supplemented by our
own experiences and validated by practitioners and experts from industry and academia. After discussion with experts,
we came up with five categories into which to sort the criteria, which focus on different aspects to enable more focused
assessments. Thereby also, a certain amount of redundancy was retained so as to enable assessments based on one or two
categories of interest only.

The second research question raised in this paper, ie, why are the criteria important for the evaluation of a particular
formal method, has been addressed in Sections 2.3.1-2.3.5. Here, we discussed each element of the criteria list in detail.

To put these criteria on which we finally settled into practice, we made an assessment of seven particular model-oriented
formal methods, based on the available literature and documentation, our own experience, and discussions with experts
of the method. This answers our last research question raised in this paper, ie, how do particular formal methods fare
with respect to these criteria.

The selected methods discussed in this paper are so-called state-based methods and are widely used in industry; how-
ever, we hope that others will venture to apply these criteria to other methods as well, and we would be interested to hear
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from such assessments, from corrections of the particular assessments given here, or from alternative assessments. In the
future, we also want to evaluate other formal methods widely used in industry such as PVS and SCADE.
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